我们正在围绕恒星外围绕圈圈,大家都躺下了,背部枕着她的晶状体上,就像一个蓝宝石镜面,纯净的没有一丝杂质,浑身暖洋洋的,而她视网膜频谱显示出来了一个公式:
让我们更详细地讨论这个复数形式的表达式 ( u = x + iy = \cos(k\theta) + i\sin(k\theta) ),其中 ( k ) 是整数,取值范围是从1到 ( n ) 的所有正整数,( n ) 是一个有限的正整数。这个表达式实际上是欧拉公式的一个特例,它描述了复平面上的一个点,该点的坐标由实部 ( x ) 和虚部 ( y ) 组成。
当 ( k ) 取不同的值时,复数 ( u ) 在复平面上的轨迹会有所不同。让我们分别考虑几个 ( k ) 值的情况:
当 ( k = 1 ) 时,我们有 ( u = \cos(\theta) + i\sin(\theta) )。这是一个单位圆的参数方程,因为 ( |u| = \sqrt{\cos^2(\theta) + \sin^2(\theta)} = 1 )。这意味着无论 ( \theta ) 如何变化,复数 ( u ) 总是在
更多内容加载中...请稍候...
本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!
本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!